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Abstract
We study nonlocal electrostatics in inhomogeneous dielectric environments on the
sub-nanometer scale using a recently introduced polarization energy functional. This functional
is able to generate a wavevector-dependent dielectric function ε(q) that reflects local
correlations in the medium’s polarization. Its longitudinal component either decays
continuously from its macroscopic continuum value to one at large q , or additionally exhibits
two poles with a negative band at intermediate wavevectors (overscreening), which is
characteristic of polar fluids such as water. We show that the functional reproduces known
nonlocal electrostatic effects: the pair potential between point charges or Born ions in water at
distances less than 5 Å is strongly modified, and the Born solvation energy is found to either
decrease or increase relative to its local electrostatics value, depending on which approximation
is chosen for ε(q). We then apply the functional to geometries that can no longer be treated
analytically, such as a molecular pore of finite length. In such an anisotropic dielectric
background transverse correlations in the polarization field no longer vanish and can contribute
to substantial modifications of the dielectric barrier for ion translocation in the regime of
intermediate pore diameters of 6–10 Å.

1. Introduction

The conventional theory of dielectric response in continuous
media is based on a local, linear relationship between the
dielectric displacement field D and the electric field E mediated
by the dielectric permittivity ε(r), D(r) = ε(r)E(r) [1].
Underlying this approach is the assumption that correlations
in the polarization field P = D − E are absent and a purely
local susceptibility χ(r) suffices to describe the response to
an electric displacement, P(r) = χ(r)D(r). While this
is usually a good approximation for macroscopic objects, it
does not accurately describe liquids on the sub-nanometer
scale. In a highly polar fluid such as water, for instance,
the orientation of the dipole moment of a water molecule
is strongly dependent on the orientation of the molecules
in the immediate neighborhood. In order to describe such
correlations, one must assume that the dielectric response is
nonlocal and the dielectric function depends on two spatial
arguments [2–5]:

D(r) =
∫

dr′ε(r, r′)E(r′). (1)

In Fourier space, the dielectric function is therefore
wavevector-dependent. In isotropic materials, the only relevant
quantity is the longitudinal component D(q) = ε(q)E(q),
which can deviate substantially from the macroscopic, long
wavelength limit ε. While stability requires that the
macroscopic dielectric constant ε � 1, the only forbidden
range for ε(q) is 0 � ε(q) < 1 [6].

The dispersion of ε(q) can be obtained from the
correlation of polarization fluctuations S(q) and the fluctuation
dissipation theorem, ε(q) = 1/(1 − S(q)/kBT ). However,
reliable results for S(q) from scattering experiments or
computer simulations are difficult to obtain, and only a few
results have recently become available. In the absence of
tight experimental constraints, a popular starting point has
therefore been to assume that polarization correlations decay
exponentially over a length scale 1/q0, which lead to a
Lorentzian form of the dielectric function [4]:

ε(q) − 1 = 1/(κ + (q/q0)
2). (2)

This model has been extensively studied and already
improves local electrostatics, since it interpolates between the
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macroscopic continuum limit ε(q = 0) ≡ ε = 1 + 1/κ

and the correct limit ε(q → ∞) = 1. If the solvent
is water or, more generally, a polar fluid, however, model
calculations [7], neutron diffraction experiments and atomistic
molecular dynamics simulations [8–10] have shown that the
form of ε(q) is more complicated. Before decaying to 1 at large
wavevectors, the dielectric function passes through two poles,
and in between lies a band of negative values. The origin of
this behavior is an overresponse or overscreening [11], so that
the susceptibility χ(q) = 1 − 1/ε(q) > 1 for wavevectors q
between 1 and 12 Å

−1
.

The theory of nonlocal electrostatics is significantly more
complicated to handle than the local approximation, since
it involves a set of integro-differential equations; only the
simplest geometries are analytically tractable. Molecular
simulations with explicit solvent molecules take nonlocal
correlations automatically into account, but all coarse-grained,
implicit solvent models to date have completely ignored such
effects due to the lack of computationally efficient techniques.
An interesting proposition is the use of an auxiliary field
that permits a reformulation in terms of partial differential
equations in real space [12]. Using this approach, the Born
solvation energy of ions was calculated with the approximation
of equation (2). Although more complicated geometries can
in principle be studied with this approach, it has not yet been
widely applied.

Moreover, previous works on nonlocal electrostatics have
only considered longitudinal correlations in the polarization
field. Although these determine the longitudinal part of
ε(q), transverse correlations are also present, as was recently
confirmed by direct molecular dynamics simulations [13].
Since such correlations couple to the curl degrees of freedom
of the polarization field P, they can be expected to contribute in
geometries where the field lines strongly deviate from spherical
symmetry. No calculation has explored the importance of these
effects so far.

In this paper, we study numerically nonlocal dielectric
effects via a recently introduced nonlocal polarization energy
functional that is capable of generating wavevector-dependent
dielectric functions of both the form of equation (2) and
additionally the main features of ε(q) in water [14], including
overscreening. The model has been proposed to include
nanoscale dielectric effects in implicit solvent simulations
within a local Monte Carlo algorithm for charged systems [15].
A major attraction of this technique is that it is fairly
easy to implement even in very complicated geometries and
scales linearly with the number of charges in the system.
Additionally, transverse polarization correlations can easily
be included. We first apply this functional to a few generic
situations in order to show that the approach agrees with
earlier, well-known results for the importance of nonlocal
electrostatics on the nanoscale: both pair potentials and
solvation energies strongly deviate from their local values on
scales of the order of a few ångströms. We then study situations
that can no longer be treated analytically, in particular the
important situation of ion translocation through a narrow
channel surrounded by a low dielectric material. We show
that the transverse polarization correlations become important

Figure 1. Typical geometries arising in electrostatic problems.
Upper panel: Born ions of radius r correspond to a low dielectric
sphere (gray) immersed in high dielectric water. Lower panel: a low
dielectric membrane (gray) forms a molecular pore.

and substantially increase the dielectric barrier and hence the
channel resistance.

2. Model

We consider the electrostatic energy functional suggested
in [14]:

U = 1
2

∫
d3r [(D − P)2 + κ(r)P2 + κl(r)(div P)2

+ κtr(r)(curl P)2 + α(r)(grad div P)2] (3)

supplemented by the Gauss constraint div D = ρ, where ρ

is the charge density. Equation (2) can be viewed as a low
order Landau–Ginzburg expansion of the electrostatic energy
of polarization. If only the first two terms (D−P)2 and κ(r)P2

are present, conventional local electrostatics of continuous
media with ε(r) = 1 + 1/κ(r) is obtained at the minimum
of U . The gradient terms generate in addition scale-dependent,
nonlocal interactions of the polarization field. In general, the
dielectric function resulting from the above energy functional
is

ε(q) = 1 + 1/(κ(r) + κl(r)q2 + α(r)q4). (4)

The curl term coupling to the transverse degrees of freedom
does not affect the longitudinal component of the dielectric
function, but nevertheless contributes to the total electrostatic
energy. The coefficients in front of the polarization
terms describe the nature of the dielectric response of the
material. For modeling a purely homogeneous solvent, no
spatial dependence is needed. Figure 1 depicts typical
situations, however, where different regions are occupied with
different (mobile or immobile) dielectric matter, and modeling
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Figure 2. (a) Dielectric functions ε(q) used in this paper. Straight
line local dielectric ε(q) ≡ ε = 80, other lines equation (4) for the
Lorentzian model with q0 = 3 Å

−1
(thick dashed) and q0 = 2 Å

−1

(thin dashed), and the water model with q0 = 3 Å
−1

, A = 2
(double-dashed) and q0 = 2 Å

−1
, A = 5 (dotted). (b) Corresponding

structure factors S(q)/kBT for the same sets of parameters. For the
water model the height of the peak at q0 is A.

the corresponding heterogeneous response requires different
coefficients in different regions.

When setting κl = 1/q2
0 and α = 0, we obtain

equation (2), which will be referred to as the ‘Lorentzian
model’ in the following. We assume equal strength of
longitudinal and transverse correlations and set κtr = κl

throughout the paper. In the Lorentzian model, both κl and κtr

must be positive for stability. When the expansion is truncated
after the second-order grad div term, however, κl may be
negative as long as the coefficient of the highest-order term
α remains positive. It is now possible to select a characteristic
wavelength q0 for the spatial modulation of the polarization
field, corresponding to a band of negative dielectric function
(the overscreening effect), as can be seen in figure 2; we will
refer to this model as the ‘water model’, equation (4).

An alternative to generating the overscreening effect in
a Ginzburg–Landau Hamiltonian was suggested in [11]. In
this work, the Hamiltonian is truncated at first order after
the (div P)2 term, but contains two polarization fields, one of
which is coupled to the gradient of a scalar order parameter
field that may correspond to a local density. This formulation
lends itself to a physical interpretation, in which overscreening
arises from correlations between polarization and density. The

present work shows that such a coupling is not necessary
and the overscreening resonance can also be obtained from a
single vectorial order parameter field if higher-order terms are
included instead. Both the present approach and that of [11]
describe linear response only; for an extension to nonlinear
effects see [16, 17].

Figure 2(a) shows the five different dispersion relations
studied in this work: a purely local dielectric with no
dispersion, and two parameterizations for the Lorentzian and
water models, respectively. In order to map the water
model onto real solvents, it is convenient to parameterize the
coefficients in terms of the position q0 of the maximum of the
(experimentally measurable) response function with amplitude
A: the maximum of S(q)/kBT = 1−1/ε(q) is located at q2

0 =
−κl/2α which fixes α in terms of κl, and setting S(q0)/kBT =
A determines κl = 2(1/A − κ − 1)/q2

0 in terms of q0 and A.
Figure 2(b) illustrates the response functions corresponding to
the five dielectric functions. In this representation, the origin
of the overscreening effect as a peak in the structure factor of
the bound charge density is particularly visible.

For water with a macroscopic dielectric constant ε = 80,
the simulations of Bopp et al [8] suggest q0 = 3 Å

−1
and

A = 2. However, subsequent work found that these values can
be very sensitive to the local charge distribution of the water
molecule and suggests instead q0 = 2 Å

−1
, A = 5 [18]. Given

the variability of these results, a unique parameterization of
equation (3) for water cannot be given at present. We therefore
study both sets of parameters to explore the implications of
this variability for physically measurable quantities. Both
parameterizations are compatible with the forbidden region
0 � ε(q) < 1. The electrostatic energy is discretized and
minimized using Monte Carlo techniques; for details see the
appendix.

3. Results

3.1. Ions in homogeneous solvent

We begin our demonstration of nonlocal dielectric effects in
the simplest possible situation, a pair of ions of opposite
charge in a uniform solvent described by equation (3). For a
local dielectric, the energy for a pair of ions with charges ±e
separated by a distance r is given by Coulomb’s law:

U(r) = −e2

4πε0εr
+ O

(
e2r 2

3εL3

)
. (5)

The quadratic correction has its origin in the periodic boundary
conditions associated with the constrained electrostatic
functional [19]. In figure 3, we show the electrostatic energy as
a function of distance in five different dielectric backgrounds.
The local dielectric agrees with equation (5). The Lorentzian
model simply increases the attractive interaction at short
distances, and more so for smaller wavevectors q0. This
trend can be expected from the fact that ε(q) < ε for all
nonzero wavevectors q; hence the ions see a smaller effective
permittivity [4] and the energy increases. The behavior for
the water model with its band of negative permittivity is much
more spectacular and implies qualitatively different behavior.
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Figure 3. (a) Pair potential for oppositely charged ions. �: local
dielectric, ��: Lorentzian model q0 = 3 Å

−1
, ◦: Lorentzian model

q0 = 2 Å
−1

, 	: water model q0 = 3 Å
−1

, A = 2, 
: water model
q0 = 2 Å

−1
, A = 5. Solid line: expected behavior equation (5) for

local electrostatics. (b) Close-up of the small-distance region.

We observe that the sign of the interaction is reversed at short
distances and the potential exhibits damped oscillations that
reach past 5 Å. Ions experiencing this potential in thermal
equilibrium would be expected to populate the minima and
the density should show oscillatory behavior. Although the
presence of such potential oscillations in polar solvents has
been pointed out many years ago [20, 4, 7], Coulomb’s law
(equation (5)) is still considered appropriate for interactions
between point charges in implicit solvents.

3.2. Born ions in homogeneous solvent

In molecular simulations, ions are often not just modeled as
point charges, but instead are represented as a point charge
inside a spherical cavity of radius r from which the solvent
is excluded. Inside the cavity, the dielectric permittivity is
therefore that of free space, ε(q) = 1, and the coefficients
of the nonlocal terms vanish (κl = κtr = α = 0). This
model is known as the Born model of ions. Figure 4 explores
the role of nonlocal dielectric response on the interaction
between two such Born ions. We observe the same qualitative
behavior already discussed for point charges. The Lorentzian
model only increases the interaction at small scales, but the
water model shows again strong oscillatory behavior and sign
reversal at short distances.

Figure 4. Pair potential for oppositely charged Born ions of radius
r = 1a. �: local dielectric, ��: Lorentzian model q0 = 3 Å

−1
,◦: Lorentzian model q0 = 2 Å

−1
, 	: water model

q0 = 3 Å
−1

, A = 2, 
: water model q0 = 2 Å
−1

, A = 5.

3.3. Born solvation energy

The Born solvation energy is the energy released when
solvating a single Born ion inside a low dielectric sphere
of radius r in high dielectric water. This quantity
is of fundamental importance for the thermodynamics of
electrolytes. If the solvating liquid is a local dielectric with
permittivity ε, this energy has the well-known Born form [21]

UBorn = e2

8πε0r

(
1

ε
− 1

)
, (6)

which is equivalent to the electrostatic energy of an ion in
its own reaction field. The effect of nonlocal electrostatics
on the Born solvation energy has already been investigated in
previous work [22, 12]. Generally, UBorn is found to decrease
relative to the value in a local dielectric for the Lorentzian
model, but increases for the water model. Indeed, results from
our present approach using the polarization energy functional
are consistent with these trends. We place a single charge at the
center of a low dielectric described by local electrostatics with
ε = 1 and vary the radius r of the dielectric sphere. Figure 5
plots this energy as a function of ion radius r . Note that,
since our method requires charge neutrality, all energies are
measured against a uniformly charged background of opposite
sign. For the local dielectric, we recover approximately the
1/r behavior predicted by equation (6); the nonlocal terms
lead to deviations. For an ion of radius r = 1 Å, figure 5
shows a decrease of the Born solvation energy by ∼30%
for the Lorentzian model in qualitative agreement with, for
example, [12]; the water model slightly increases the energy
instead.

Experimentally measured Born solvation free energies are
always lower than those predicted by equation (6) and hence in
better agreement with the Lorentzian model than with the water
model. It has been shown, however, that the overscreening
resonance can be reconciled with experimental values by going
to a smeared Born sphere, which should be a more realistic
representation of ions in solution [22]. Additionally, the
present results were obtained with linear response theory, and
including nonlinear effects also leads to better agreement [17].
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Figure 5. Born solvation energy for single charge in a dielectric
sphere of radius r with smeared-out background for charge
neutrality. �: local dielectric, ��: Lorentzian model q0 = 3 Å

−1
, ◦:

Lorentzian model q0 = 2 Å
−1

, 	: water model q0 = 3 Å
−1

, A = 2,

: water model q0 = 2 Å

−1
, A = 5. Solid line: equation (6).

Curves have been shifted by a constant offset so that (�) agree with
equation (6) at large r .

3.4. Dielectric barrier for an ion channel

The electrostatic problems discussed so far were examples of
highly symmetric, spherical geometries and could have also
been studied analytically. Situations of experimental interest
usually do not exhibit such symmetry, but can be addressed
with equation (3) with no additional difficulty. A situation of
great biological and technological importance is the transport
of ions through a water-filled narrow channel formed by a low
dielectric material. Ion channels in lipid membranes are truly
nanoscopic devices with typical radii of 3–8 Å and a length
of ∼50 Å, while artificial nanopores, for instance in silicon
oxide films, are somewhat larger with radii rch ∼ 10 Å and
tens of nanometers in length [23]. In both cases, the dielectric
permittivity of the channel-forming material is between εm =
2–4, which creates a huge contrast to the surrounding water at
εw = 80.

Due to the dielectric contrast, the energy of an ion inside
a channel is much higher than in a homogeneous solvent
environment. The field lines are mostly confined to the high
dielectric region, and the electrostatic energy rises linearly
with charge separation. The energy difference between an
ion inside and outside the channel is referred to as the
dielectric barrier and fundamentally controls the conductivity
of the channel [24]. It has been the subject of much current
research and has been calculated on the level of fully atomistic
molecular dynamics [25] and highly idealized geometries
using continuum electrostatics [26, 27].

The simplest model of an ion channel consists of a
cylindrical region of water of radius rch embedded in a low
dielectric medium. For an infinite channel described by two
local dielectrics εw inside the channel and εm outside the
channel, the electrostatic calculations of [28] estimate the
dielectric barrier

U∞ ≈ e2
√

2(log(2ξ/rch) − 0.577)

8πε0
√

εwεmrch
− 0.13e2

8πε0εmξ
, (7)

Figure 6. Dielectric barrier for a cylindrical ion channel of radius rch

and εm = 1 with smeared-out background for charge neutrality.
(a) Infinite channel, (b) finite channel of length L = 3r . �: local
dielectric, ��: Lorentzian model q0 = 3 Å

−1
, ◦: Lorentzian model

q0 = 2 Å
−1

, 	: water model q0 = 3 Å
−1

, A = 2, 
: water model
q0 = 2 Å

−1
, A = 5. Also shown are results for the local dielectric

and transverse correlations (q0 = 2 Å
−1

) (�). Solid line:
equations (7) and (8).

where ξ must be determined from the transcendental equation
ξ 2 = r 2

ch(εw/2εm)(ln(2ξ/rch) − 0.577). Similarly, for a finite
channel of length L the barrier is approximately

UL ≈ U∞(1 − exp(−L/2ξ)). (8)

According to these expressions, the barrier for an infinite
channel varies ∼1/rch; the same holds true for a finite channel
if L ∝ rch.

The only available study of nonlinear effects on the
translocation barrier has been limited to the Lorentzian model
in the analytically solvable situation of an infinite slab or
cylinder [29, 30]. In figure 6 we calculate the dielectric barrier
as the energy difference between a single ion centered in the
middle of a channel and the same ion solvated by pure water for
channel radii varying from 3 to 6 Å. Panel (a) shows results for
an infinite channel, which is often taken as an approximation
for a very long channel, while panel (b) examines the opposite
limit of a very short channel. This geometry is no longer
analytically solvable. Inside the channels, the dielectric is
described by the full equation (3), while outside the channel

5
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we set κl = κtr = α = 0. This implies that the
dielectric profile changes from that of a local electrostatic in
the membrane to that of water over the scale of one mesh
spacing h. For the local dielectric, numerical results agree
quite well with the approximations of equations (7) and (8);
exact agreement should not be expected due to the boundary
conditions and the uniform countercharge. Interestingly, all
nonlocal approximations increase the dielectric barrier over the
local value to varying extent. A significant part of this increase
is due to the (curl P)2 term in equation (3), which is evidenced
by the (�) data that is based on the local approximation and
the (curl P)2 term only. In our model, the dielectric barrier
typically doubles or triples for small radii. A much larger
effect is seen for the water model with q0 = 2 Å

−1
, A = 5,

where the barrier rises strongly above the local value. This
result underlines the strong sensitivity of the results to the
parameterization of the energy functional. Once the channel
radii reach ∼6 Å the barriers begin to reach the local value and
nonlocal effects cease to be important. We note that one cannot
expect equation (3) to describe ultrasmall channels that would
only fit single water molecules.

4. Discussion

We have computed nonlocal electrostatic effects on the level
of a linear polarization free energy functional that yields a
dielectric permittivity with the main features of water in several
standard geometries. Additionally, it includes transverse
correlations of the polarization field that were not present in
earlier treatments of nonlocal dielectric response. In isotropic
systems, our approach reproduces, in agreement with earlier
work [4], that the Coulomb interaction on distances <5 Å
is strongly altered by a permittivity that includes a band of
negative values at finite wavevectors. The potential between
bare ions is no longer purely attractive, but exhibits damped
oscillations at short distances and can therefore change sign.
These oscillations may be unimportant in dilute salt solutions
where the ions are far away from each other, but should alter
the structure of a condensed counterion cloud around strongly
charged colloids or polyelectrolytes [31].

Also in agreement with previous results from nonlocal
electrostatic theory, the Born solvation energy UBorn increases
relative to the local electrostatic result. Since the local
dielectric approximation already overestimates experimental
Born solvation energies, linear nonlocal response cannot
be invoked to explain this discrepancy. This finding,
however, does not imply that nonlocal electrostatics is at odds
with experiments. Relatively simple improvements such as
considering a smeared Born sphere or nonlinear effects already
lead to much better agreement. More recently, it has been
pointed out that the modified solvent structure in the vicinity of
a solvated ion can also play a role [32]. Using integral equation
theory, very good agreement with UBorn for monovalent ions
was achieved.

Finally, models of ion channels based on purely local elec-
trostatics would underestimate the dielectric barrier. Moreover,
nonlocal models not including transverse correlations would
miss a large fraction of this effect. Since the resistivity of an ion

channel depends exponentially on the magnitude of the dielec-
tric barrier, it may be quite sensitive to nonlocal interactions.
As in the case of solvation, however, experimental barriers are
much lower than even those obtained from local electrostatics,
so that other effects, such as screening by salt or decoration of
channel walls with charges [33], must be invoked to explain
why membrane channels exhibit the measured ion conductivi-
ties.

Nonlocal electrostatics is usually completely ignored in
implicit solvent simulations of charged soft matter systems.
The local polarization functional provides a relatively simple
way to include such effects in Monte Carlo simulations and
could in principle be generalized to molecular dynamics. A
limitation is the current uncertainty in the parameterization of
the functional. Atomistic simulations measuring the dielectric
function are involved and the results are sensitive to the type of
water model used in the computations. In light of the results
of [32], it seems necessary to take into account local distortion
of the solvent in the vicinity of charges, which could readily
be done using the spatially varying coefficients in the energy
functional. Additionally, the dielectric behavior of interfacial
water is likely different from that of bulk water and may have
to be described by a smooth interpolation from bulk water to
bulk membrane dielectric. Further molecular dynamics studies
similar to those for bulk water [8], but in the presence of low
dielectric boundaries, are needed to reliably parameterize the
functional near interfaces so that fully quantitative modeling
can be performed.
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Appendix. Numerical discretization of the energy
functional

For numerical simulation, we discretize the energy equation (3)
on a periodic cubic mesh of size L with mesh spacing a =
0.25 Å. As illustrated in figure A.1, it is natural to interpolate
the vectorial fields D and P onto the links that emanate from
the vertices n = (i, j, k), and we denote the components in a
Cartesian direction δ on vertex n with Dn

δ and Pn
δ , resp. The

(scalar) divergence of P is then associated with the vertices,
(div P)n and the gradient of the divergence again with the links
connecting two vertices, (grad div P)n

δ . The components of
the curl of P, however, are associated with the normal of the
face formed by four links each and denoted by (curl P)n

δ . The
discretized energy then is

U = a3

2

∑
n=(i, j,k)

∑
δ=x,y,z

[(Dn
δ − Pn

δ )2 + κn
δ (Pn

δ )2

+ κn
l [(div P)n]2 + κn

tr,δ[(curl P)n
δ ]2

+ αn
δ [(grad div P)n

δ ]2], (9)
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Figure A.1. Discretization of the energy functional equation (3) onto
a cubic mesh. The vectorial quantities D and P are associated with
the links connecting the vertices of the lattice. The scalar quantity
div P is associated with the vertices and the vector curl P is
associated with the faces of the mesh. The spatial fields
κ(r), κl(r), κtr(r) and α(r) are all discretized onto lattice vertices.

where the summation runs over all vertices and links (i jk)

and three Cartesian directions δ. For the discretized curl, div
and grad operators we use finite differences involving nearest-
neighbor sites only.

The spatially varying coefficients κ(r), κl(r), κtr(r) and
α(r) are also discretized onto the vertices of the mesh. While
the coefficient κl can be directly used in the scalar (div P)2

term in the discretized energy, an additional interpolation step
is necessary to obtain discretized coefficients for the vectorial
quantities associated with the links. The coefficients κn

δ and
αn

δ are therefore arithmetic averages over the values of the
coefficients on the two nodes connecting the link in direction
δ. For x-directed links, for instance, κ

(i, j,k)
x = (κ(i, j,k) +

κ(i+1, j,k))/2 and α
(i, j,k)
x = (α(i, j,k) + α(i+1, j,k))/2; analogous

expressions hold for the y and z directions. Finally, the
coefficient κn

tr,δ multiplying the curl is an arithmetic average
over the values of κn

tr on the four vertices that form the plaquette
with surface normal in the δ direction.

Having discretized the energy, the charge density ρ(r)
must also be interpolated onto the mesh. While full off-lattice
schemes have been demonstrated in previous work [19, 34],
we restrict ourselves here to a lattice gas and place the charge
density directly onto the vertices, i.e. ρn = q/a3. This
does not pose a serious restriction, as we are interested in
demonstrating nonlocal electrostatic effects in static situations
only. In a constrained Monte Carlo simulation at finite
temperature, both particles and all field degrees of freedom
would undergo transitions with Metropolis rates. Here, we
minimize the energy equation (9) with respect to D and
P for a fixed charge configuration. In this minimization,
we initialize the displacement field D so that it satisfies
Gauss’s law and then operate on its curl degrees of freedom
only; the Gauss constraint hence remains satisfied. The

polarization P is unconstrained and varied accordingly. Global
minimization proceeds by repeated local minimization of the
energy functional. For improved efficiency, a third type of
Monte Carlo move is useful that consists in a combined update
of curl P and curl D. This move separately minimizes the terms
proportional to P2 and (curl P)2 only while leaving all other
terms invariant.
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